stochastic linearization - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

stochastic linearization - перевод на русский

TRANSFORMATION OF THE LOGISTIC GROWTH CURVE IN A LINEAR MATHEMATICAL RELATIONSHIP
Hubbert Linearization
  • Example of a Hubbert Linearization on the US Lower-48 crude oil production.

stochastic linearization      

математика

стохастическая (вероятностная) линеаризация

stochastic model         
  • Wiener]] or [[Brownian motion]] process on the surface of a sphere. The Wiener process is widely considered the most studied and central stochastic process in probability theory.<ref name="doob1953stochasticP46to47"/><ref name="RogersWilliams2000page1"/><ref name="Steele2012page29"/>
  • red}}).
  • Mathematician [[Joseph Doob]] did early work on the theory of stochastic processes, making fundamental contributions, particularly in the theory of martingales.<ref name="Getoor2009"/><ref name="Snell2005"/> His book ''Stochastic Processes'' is considered highly influential in the field of probability theory.<ref name="Bingham2005"/>
  • [[Norbert Wiener]] gave the first mathematical proof of the existence of the Wiener process. This mathematical object had appeared previously in the work of [[Thorvald Thiele]], [[Louis Bachelier]], and [[Albert Einstein]].<ref name="JarrowProtter2004"/>
  • A single computer-simulated '''sample function''' or '''realization''', among other terms, of a three-dimensional Wiener or Brownian motion process for time 0 ≤ t ≤ 2. The index set of this stochastic process is the non-negative numbers, while its state space is three-dimensional Euclidean space.
MATHEMATICAL OBJECT USUALLY DEFINED AS A COLLECTION OF RANDOM VARIABLES
Random function; Theory of random functions; Stochastic processes; Random process; Stochastic transition function; Heterogeneous process; Stochastic effects; Stochastic Process; Random signal; Random system; Random processes; Stochastic model; Stochastic systems; Homogeneous process; Stochastic models; Kolmogorov extension; Stochastic system; Process (stochastic); Discrete-time stochastic process; Stochastic dynamics; Stochastic deaths; Stochastic processe; Stochastic Processes; Real-valued stochastic process; Version (probability theory)

общая лексика

вероятностная модель

homogeneous process         
  • Wiener]] or [[Brownian motion]] process on the surface of a sphere. The Wiener process is widely considered the most studied and central stochastic process in probability theory.<ref name="doob1953stochasticP46to47"/><ref name="RogersWilliams2000page1"/><ref name="Steele2012page29"/>
  • red}}).
  • Mathematician [[Joseph Doob]] did early work on the theory of stochastic processes, making fundamental contributions, particularly in the theory of martingales.<ref name="Getoor2009"/><ref name="Snell2005"/> His book ''Stochastic Processes'' is considered highly influential in the field of probability theory.<ref name="Bingham2005"/>
  • [[Norbert Wiener]] gave the first mathematical proof of the existence of the Wiener process. This mathematical object had appeared previously in the work of [[Thorvald Thiele]], [[Louis Bachelier]], and [[Albert Einstein]].<ref name="JarrowProtter2004"/>
  • A single computer-simulated '''sample function''' or '''realization''', among other terms, of a three-dimensional Wiener or Brownian motion process for time 0 ≤ t ≤ 2. The index set of this stochastic process is the non-negative numbers, while its state space is three-dimensional Euclidean space.
MATHEMATICAL OBJECT USUALLY DEFINED AS A COLLECTION OF RANDOM VARIABLES
Random function; Theory of random functions; Stochastic processes; Random process; Stochastic transition function; Heterogeneous process; Stochastic effects; Stochastic Process; Random signal; Random system; Random processes; Stochastic model; Stochastic systems; Homogeneous process; Stochastic models; Kolmogorov extension; Stochastic system; Process (stochastic); Discrete-time stochastic process; Stochastic dynamics; Stochastic deaths; Stochastic processe; Stochastic Processes; Real-valued stochastic process; Version (probability theory)

математика

однородный процесс

Википедия

Hubbert linearization

The Hubbert linearization is a way to plot production data to estimate two important parameters of a Hubbert curve, the approximated production rate of a nonrenewable resource following a logistic distribution:

  • the logistic growth rate and
  • the quantity of the resource that will be ultimately recovered.

The linearization technique was introduced by Marion King Hubbert in his 1982 review paper. The Hubbert curve is the first derivative of a logistic function, which has been used for modeling the depletion of crude oil in particular, the depletion of finite mineral resources in general and also population growth patterns.

Как переводится stochastic linearization на Русский язык